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Abstract. The CORDER web mining engine developed by the Knowledge Media Institute1 and 
Stella Group2 computes a lexical co-occurrence network out of websites – a binary relation R. 
A natural extension of CORDER would be that of learning an ontology. However, our work 
shows that co-occurrence proves insufficient to discover concepts and conceptual taxonomies 
(i.e. very simple ontologies) out of this network. To tackle this problem two unsupervised 
learning methods were studied based, on the one hand, on set similarity (and thus on a set-
based representation of the data) and, on the other hand, on cosine similarity (and thus on a 
vector-space representation of the data). The underlying idea being that of taking into account, 
for the clustering, as features, their related co-occurring entities (and thus the indirect links 
among the entities), as suggested by O. Ferret (cf. [4]). For the purposes of this study, we 
restricted ourselves to (solely) research areas. The most promising results in our experiments 
were given by the vector-space representation. To validate the results we used the ACM 
classification of computer science research areas as our gold standard. 
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1. Motivation

1.1. Extending CORDER. The CORDER web-mining algorithm computes a
relation that we will denote R holding between named entities of different types
(research areas, researchers, organizations, etc.), according to relation strength mea-
surements based on coocurrence, and that are recognized and extracted by the NER
platform (i.e. a shallow parser) ESPOTTER (cf. [3], [2]). This relation is computed
by way of a proximity graph (a lexical co-ocurrence network). And the associated
similarity/distance matrix 1 (a symmetric square matrix of real numbers of order
n × n) can be afterwards used to index or rank the entities, since the graph can
be embedded into a n-dimensional vector space –where n denotes the size of the
data set extracted from the Southampton Department of Computer Science website
(i.e. the set of named entities extracted from it). The open problem left is whether
this output, when we restrict R to entities of the same type, can serve to learn on,
again, an unsupervised basis, a domain ontology (a taxonomy to be more precise)
describing the domain of artificial intelligence.

1.2. The methods for extracting a taxonomy of research areas. The main
aim of this work is therefore to try to extract a hierarchy of research areas (an
ontology restricted to taxonomical relations) to a certain degree by means of hi-
erarchical agglomerative clustering (using Ward’s well-known algorithm, cf. [5].
[1] and [12]). Now, clustering (either hierarchical or partitional) works on some
distance/similarity previosuly defined measure among the clustered objects (and
a previously computed distance/similarity measure). We thus experimented with
three different clustering methods based on three different metrics, namely:

(1) A variant of the well-known set similarity measure.
(2) The cosine similarity measure.
(3) CORDER’s own distance measure.

Results were then validated by comparing them to the ACM (Association of Com-
puter Machinery) classification – our gold standard.

1.3. The reasons behind hierarchical clustering. Learning an ontology (a tax-
onomy) can be understood as the process of inductively inferring a hierarchy of
concepts from a collection of individuals holding properties and relations among
them, a dataset – the real-world domain. This involves three main stages:

(1) To achieve this conceptual structure we need some kind of intermediate
representation (of some lower level), as required by clustering algorithms
(such as Ward’s, cf. [1], [12] and [5]).

(2) Furthermore, it has been argued (by O. Ferret) that (from the standpoint
of lexical and textual semantics) concepts (intensions) can be taken to be
collections of (named) entities: an equivalence class modulo synonymy –
clusters. And that the clustering features are nothing but cooccurring en-
tities under the assumption that shared meaning among entities involves
shared coocurrence with other entities (cf. [4] – and [9] for a more general
discussion on ontologies and concept taxonomies).

(3) Therefore, to discover concepts and concept subsumption (yielding a taxon-
omy) we need a method capable of, on the one hand, clustering the entities
w.r.t. their meanings, yielding concepts, and to hierarchically structuring

1Similarity and distance are dual notions.
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these clusters. Whence the utility of hierarchical clustering to discover this
conceptual structure (cf. [10]).

1.4. Modelling the data. The objects or individuals to be clustered need there-
fore to be previously modelled in order to yield concepts by way of clusters. We
thus chose two different representations of the data, namely: (1) as sets of features
and (2) as feature vectors – and defined two metrics based, respectively on set
distance and cosine distance, to build a distance matrix so as to perform clustering.
These representations of the data are quite natural, since entities are structured by
CORDER (and likewise by any other algorithm building a cooccurrence matrix)
into a graph. Their features are then nothing but their immediate neighbourhood
in the graph. Clustering is thus performed on a set or vector-space representation
of these subgraphs.

1.5. Research areas as spanning trees. CORDER computes, as already no-
ticed, a lexical coocurrence network. Concentrating on any one of its vertex and its
immediate neighbourhood yields an acyclic connected component – i.e. a (weighted)
tree, whose root can be seen as the research area, the individual, and whose leaves
as its features or properties. Moreover, leaves can be ordered following their edge’s
weight from lightest to heaviest. In the case we are studying, the objects to be
clustered are research area entities and the features of a research area nothing but
its related entities of the same type – i.e. the related research areas of its neighbour-
hood, ranked according to the aforementioned order. As a matter of fact, a subset
of this neighbourhood is enough, since many of these research areas can be seen as
irrelevant – their relation strength might be too low. We assume throughout this
paper that only a limited number (the top 10) are enough, because of this reason.

1.6. A word on the weighing and on the notation. We may further assume
that it is the top three or so the so to speak critical classification features – due to
the fact that, statistically, they tend to outweigh the others and define a weighting
(based on a monotone increasing sequence of numbers – the Fibonacci sequence),
based on this trend of the data. On what follows we will denote α a research area
(or area) and A their set. While we will denote a a feature of a reasearch area α,
and P their set. For a more detailed account on the metrics from which ours were
adapted cf. [5] and [12].

2. Set distance clustering method

2.1. Overview. In this section we will represent a research area α as an ordered
set sα = {a1, ..., an} of features, sorted w.r.t. relation strength and thus to co-
occurrence – its features being its nearest research areas (w.r.t., again, CORDER).
We denote their set by D. D will thus denote our input dataset. Since arguably
the most relevant features of a research areas are its best 10, we limit ourselves to
research areas of that size. Moreover, we assume as an hypothesis that the more
their strength, the more their relevance for the clustering, and define a weigthing
over them based on this intuition – clustering should be possible with, say, the
best 3 (of the 10), if it so happens. The weighting is due to the fact that plain set
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similarity 2 is too coarse a similarity measure and unadapted to sets upon which
an order may have been defined. This weighting is achieved by using the Fibonacci
function (see its graph on Figure 1), giving way to the strength or weight function
wα particular to each area and defined as the (i− 1)-est Fibonacci number for the
i-est research area (from worst to better). By doing this, we can ascribe a weight
of 1 or 2 to the worst three and 55 to the best – this area being ex hypothesi quite
determinant. The ∆ distance/similarity function among research areas then turns
out to be some ratio of their shared features to their overall features. Pairwise
similarity/distance is stored in a similarity/distance matrix.

2.2. Defining the metric. In this section we formalize the notions discussed above
and state their basic properties:

Definition 2.1. (Weight) Let α ∈ A, and let (ai)i∈{1,...,n} be an enumeration of
its features (ordered w.r.t. relation strength). The weight function for α’s features
is the function wα : (ai)i∈{1,...,n} → N such that:

wα(ai) = fib(i− 1).

That is, we map the i-est related area of a onto the (i − 1)-est term of the
sequence of the fibonacci numbers (see again Figure 1). This allows for their being
sufficiently scattered (just think in the graph of the Fibonacci function). Moreover,
this gives a far greater weight to the most relevant areas, and adds to the intuition
that it is the most relevant one the one essential for the classification. As said
previously we will only consider sequences of research areas of length n = 10, i.e.:

wα(a1) = 1,

...

wα(a10) = 55.

Remark that there is an wα function for each area α (we have thus defined a
whole family). The next step is to define the similarity/distance measure:

Definition 2.2. (Distance) Given sα, sα′ ∈ D we define their distance as the the
function ∆ : D ×D → R such that:

∆(sα, sα′) = 1−







∑

a∈sα∩s
α
′

wsα
(a) + ws

α
′ (a)

∑

a∈sα∪s
α
′

wα(a) + wα′(a)






.

The following immediate properties are quite important:

Proposition 2.1. We have that, for any sα, sα′ , sα′′ ∈ D :

• ∆(sα, sα′) = 0 (null distance).
• ∆(sα, sα′) = ∆(sα′ , sα) (symmetry).
• ∆(sα, sα′) ≤ ∆(sα, sα′′) + ∆(sα′′ , sα′) (triangularity).

Whence:

2Let E be a set. Given A, A′ ⊆ E we define their set similarity as the function sim : ℘(E) ×
℘(E) → R such that:

sim(A, A′) =
♯(A ∩ A′)

♯(A ∪ A′)
.
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fib(n)

n

Figure 1. Graph of the Fibonacci function.

Corollary 2.1. ∆ is metric and (D, ∆) a metric space.

In other words, this re-definition of set distance is mathematically sound. It
remains to be seen how well it captures semantic similarity.

3. Cosine distance clustering method

3.1. Overview. We define in this section another distance measure, which is too
a metric, based on or inspired by the cosine similarity measure 3 for vectors in
the m-dimensional R

m euclidian vector space 4 (cf. [12]). In order to do this,
we define (on basis of the previous one) a new weigthing, and map each research
area onto a normalized vector of length m ≤ (10 ∗ n) – the dimension of the term
space we thereby build (since for each of the n reseach areas, we have 10 features).

Thus an area α is now associated to (and represented by) a vector
→
xα of R

m.
Pairwise similarity/distance is again stored in a similarity/distance matrix. The
main aim of introducing this rather well known metric is that of providing a basis
of comparison with the previous one. It actually proved to yield better results
(qualitatively speaking) than the other two.

3Let
→
x ,

→
y be two vectors of the normed space R

m. Then their cosinus similarity is the function
sim : R

m × R
m → R such that:

sim(
→
x ,

→
y ) =

→
x ∗

→
y

‖
→
x‖ ∗ ‖

→
y ‖

.

4i.e. a normed vector space provided with a inner product.
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3.2. Defining the metric.

Definition 3.1. (Weight) Let a ∈ N and α ∈ A. The weight of a relatively to α

is given by the function w′
α : N → R such that

w′
α(a) =

{

wα(a) if a is a feature of α

0 otherwise.

So, formally, we represent each area α by a vector
→
xα = (w′

α(a1), ..., w
′
α(am))T

of weights in R
m. We denote the corresponding subspace of R

m they engender by
D

m. D
m is thus (so to speak) our input dataset.

Definition 3.2. (Cosinus Distance) Given
→
xα,

→
xα′ in R

m we define their cosinus
distance as the the function ∆′ : D

m × D
m → R such that:

∆(
→
xα,

→
xα′) = 1−













m
∑

i=0

[w′
α(ai) ∗ w′

α′ (ai)]

√

m
∑

i=0

[w′
α(ai)]2 ∗

√

m
∑

i=0

[w′
α′ (ai)]2













.

Obviously, ∆′ is also metric, and D
m a metric space.

4. CORDER’s relation strength – the direct link clustering method

As already mentioned, CORDER’s relation strength measure can be also taken
to be a metric ∆′′ – over the set of named entities and in particular over A, the
set of reseach area entities. As opposed to the former metrics, the features taken
into account are statistical measures drawn from the coocurrence frequency of any
two entities throughout the corpus (the Southampton website). See [2] for further
details on how this measure is actually defined. The dataset used in this case was
considerably bigger (343 entities) even though it encompassed the one that can be
seen on Figures 5 and 6 (of 30). Figure 7 shows a partial snapshot of the results
obtained (cut at a distance of 0.5). The results look like a collection of disjoint
clusters mainly because, on the one hand, CORDER’s proximity matrix is very
sparse (meaning that many entities may not cooccur at all), and on the other hand
due to the threshold. We thus obtain a forest that is subsequently flattened.

5. Ward’s algorithm and clustering

In order to infer or learn the ontology, we used Ward’s agglomerative hierarchical
clustering algorithm using the single linkage criterion (cf. [5], [1]), which is to say,
current distance minima. This algorithm builds the clusters bottom-up – i.e. it
begins by building a cluster out of each of the elements of a dataset X = {x1, ..., xn},
and proceeds then to iteratively merge them pairwise (unless a threshold for minima
is chosen). A cluster c being a certain subset of X . It relies upon defining a
distance measure upon clusters. Let δ denote the distance function defined on
data inputs. For single linkage clustering, the inter-cluster distance is the function
δ′ : ℘(X)× ℘(X)→ R such that:

δ′(c, c′) = min
x∈c,x′∈c′

δ(x, x′).
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In other words, the distance between two clusters is the minimum distance among
the objects they contain. In the case we are studying δ is one of the previously
defined distance measures – i.e. δ ∈ {∆, ∆′, ∆′′}.

Algorithm 1 Ward’s Algorithm (Single-Link Criterion)

1: procedure HIERACHICAL({x1, ....xn})
2: for 1 ≤ i ≤ n do
3: ci ← {xi};
4: end for
5: C ← {c1, ...., cn};
6: C′ ← C;
7: while ♯(C) ≥ 1 do
8: (c, c′)← arg min

(c,c′)∈C×C
δ′(c, c′);

9: c′′ ← c ∪ c′;
10: C ← (C − {c, c′}) ∪ {c′′};
11: C′ ← C′ ∪ {c′′};
12: end while
13: return C′;
14: end procedure

An algorithm of (worst case) complexity O(n3). There are n merging steps
(iterations of the while loop), and at each step O(n2) comparisons to find the
minima, n being the size of X . From the standpoint of graph theory, the algorithm
can be seen as computing the least connected components of a spanning tree (the
graph represented by the distance matrix, which is an adjacency matrix too).

6. Results and further work

6.1. The validation method.

6.1.1. A word on the implementation. We implemented the distance measures and
the clustering algorithm (together with the needed data types and structures, such
as sets and clusters) in Java. The input dataset with which we worked being
retrieved from a (small) MSAccess database (through the JDBC API) comprising
30 research areas (see Figure 5 and 6). Outputs were stored as .txt files. To
visualize the resulting dendogram we made use of the Clustan GraphicsTM tool.
The output dendogram is a binary tree, but it can be turned easily into an n-
ary tree by thresholding cluster distance (thereby reducing its size). We plan to
implement a graphical visualization of the output in the near future. Direct link
clustering was performed by extending CORDER and operating on a dataset of
343 named entities (see Figure 7 for a snapshot).

6.1.2. The gold standard. The clustering results were validated by comparing them
to the Association of Computer Machinery (ACM) 5 classification (which can be
assumed to be an ontology), which was chosen as our gold standard. ACM classi-
fication was chosen because of its being the most comprehensive one, although it
is quite old (it has not been greatly updated since 1998 and its basic structure is

5Found at http://www.acm.org/class/1998.
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even older) and as such lacking in many new research areas that have come into
existence since (like the semantic web, to mention its most notorious gap).

6.1.3. Adapting the precision and recall IR measures. In order to better evaluate our
results we chose to adapt the well known precision and recall information retrieval
measures (cf. [12] for more details on the standard definition for text mining and
document indexing systems) to the present case. Loosely speaking, precision will
be understood as the ratio of the number of relevant clustered areas belonging
to a target set to the total number of areas, whereas recall as the ratio of the
number of these relevant clustered areas to the number of expected clustered areas.
In computing recall and precision we chose as well to put aside the structure of
the results obtained, flattening the trees. The target set is, broadly speaking, the
artificial intelligence domain (as described by the ACM classification). Clustered
areas are understood as the entities belonging to a distinguished cluster of the
learned clusters, namely one containing the artificial intelligence area. The relevant
areas, are, naturally, the areas in this distinguished cluster that belong to the target
set. The expected clustered areas are the areas in the dataset that belong to the
target set, whether or not contained by this distinguished cluster – but that we
would expect clustered together with artificial intelligence. Formally:

Definition 6.1. (Precision and recall) Let DS ⊆ A be an input dataset of
research areas, C the set of clusters computed by Ward’s algorithm and cAI ∈ C

some cluster containing the artificial intelligence research area. Then precision and
recall are the quantities:

PR =
♯{α ∈ cAI |α belongs to the ACM AI subtree }

♯{α ∈ DS|α ∈ cAI}
.

RE =
♯{α ∈ cAI |α belongs to the ACM AI subtree }

♯{α ∈ DS|α belongs to the ACM AI subtree }
.

6.2. Results.

6.2.1. Cosine and set distance. The results obtained were better when clustering
with ∆′, cosine distance (Figure 4), than with ∆, set distance (Figure 3), although
the dendograms may look quite similar at first sight. We have underlined in grey
the research areas globally clustered along with artificial intelligence. Moving to
the root of the subtree of which they are the leaves we obtain a representation of
(roughly) the artificial intelligence domain. The cosine distance dendogram clusters
with artificial intelligence areas such as robotics or agents which do belong to it
in the ACM classification. While in the set distance dendogram we can see it
includes areas such as concurrency – which belong to the domains of electronics and
software engineering, the other main areas of expertise of Southampton’s computer
scientists. Regarding ∆′′, CORDER distance, since the clustering method employed
was different, a direct comparison is not possible. However, recall and precision
measures can be used to tackle this.

6.2.2. CORDER direct link metric. CORDER’s co-ocurrence distance proved to
yield, naturally, very different results – the dataset having been far bigger. How-
ever, w.r.t. to our gold standard, they proved deceiving, clustering together arti-
ficial intelligence and networking (see Figure 7), instead of, for instance, machine
learning. This is due to the fact that, as said, the proximity matrix is very sparse,
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α α′

...

...

a1

ai

ak

Figure 2. Direct links and indirect links for two areas α and
α′. The dashed line represents the direct link. The number k of
indirect links may be null.

or that the (direct) links between two areas α and α′ may have a very low relation
strength. The other two methods (using cosine and set distance) yield better results
because they use too as features the paths, so to speak, going from α to α′ (see
Figure 2) – i.e. their being 1-accessible, together with the direct link if relevant
enough.

6.2.3. Precision and recall. For cosine and set distance we cut the resulting den-
dograms in a such a way as to obtain a reasonable good cluster or hierarchy of
clusters containing the artificial intelligence area, focusing thereafter on the root
cluster of this subtree and choosing it as our cAI cluster – see, again, the subtrees
from Figures 4 and 3 marked in grey. For the direct link method, the cAI cluster is
cluster 24 (see Figure 7). We denote PRset, PRcos and PRcor the precision (and
similarly for recall) of the set distance, cosine and direct link methods. Whence:

• PRset = 43.48%, REset = 57.14%.
• PRcos = 69.23%, REcos = 64.29%.
• PRcor = 25%, REcor = 2.86%.

Which further argues in favour of our considering ∆′ as the best metric.

6.3. Further work.

6.3.1. Clustering the spanning trees. One of the drawbacks of the method followed
(i.e. hirarchical aglommerative clustering) is its sensitivity to irrelevant features,
yielding wrong classifications. Since the basic idea is to discover semantic relations
by clustering together subgraphs of the lexical cooccurrence matrix computed by
CORDER, better results could be attained with more information about the objects
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of the input dataset, i.e. taking into account related entities of any type whatsoever
(research areas, organizations, researchers, etc.) whether all of them or just a
subset, as suggested by Ferret in [4]. CORDER distances could be, moreover,
taken as a weighting for these features, and the cosine distance as the metric for
their associated vector representation.

6.3.2. Internal and external quantitave validity criteria. Another issue that remains
to be addressed is the study and implementation of quantitative clustering validity
criteria – so as to, for example, be able to find the best n-ary tree. Since there
are only at most m of these trees (for a dataset of size m), this problem can be
easily adressed as an optimization problem maximizing some cluster validity inter-
nal criterion such as Dunn’s (i.e. maximizing intra-cluster distance and minimizing
intra-cluster distance), as suggested by Bezdek and Pal in [8]. Another reasonable
method of accomplishing this would be that of storing the clustering results as an
.xml file and then computing its similarity to the XML-formatted version of the
ACM classification – a method based in a variant of the well-known Levehnstein
edit metric but adapted to XML (see Kovacs et al. in [11] for more details).

6.3.3. Tagging the internal nodes of the taxonomical tree. Tagging the internal
nodes remains too an open problem, since the dendogram or the metrics give few
clues, as they stand, about conceptual subsumption. But that can be accomplished
by means of Hearst patterns (cf. [7]).
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Figure 3. Dendogram obtained with set distance. The areas in
grey mamrk roughly the artificial intelligence domain. Research
areas have been abridged. See the dataset (cf. Figures 5 and 6).
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Figure 4. Dendogram obtained with cosinus distance. The areas
in grey mark roughly the artificial intelligence domain. They are
also abridged.
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Figure 5. Sample dataset used comprising 30 research areas.
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Figure 6. Sample dataset – continued.
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Figure 7. CORDER clusters for 51 of the 343 areas of the dataset.
The clustering distance threshold was set to 0.5 (i.e. 50). Numbers
represent the cluster computed. Observe that artificial intelligence
is contained by cluster 24.




